881 research outputs found

    Photometric redshift of the GRB 981226 host galaxy

    Full text link
    No optical afterglow was found for the dark burst GRB 981226 and hence no absorption redshift has been obtained. We here use ground-based and space imaging observations to analyse the spectral energy distribution (SED) of the host galaxy. By comparison with synthetic template spectra we determine the photometric redshift of the GRB 981226 host to be z_phot = 1.11+/-0.06 (68% confidence level). While the age-metallicity degeneracy for the host SED complicates the determination of accurate ages, metallicity, and extinction, the photometric redshift is robust. The inferred z_phot value is also robust compared to a Bayesian redshift estimator which gives z_phot=0.94+/-0.13. The characteristics for this host are similar to other GRB hosts previously examined. Available low resolution spectra show no emission lines at the expected wavelengths. The photometric redshift estimate indicates an isotropic energy release consistent with the Amati relation for this GRB which had a spectrum characteristic of an X-ray flash.Comment: Accepted for publication in ApJ Letter

    Spitzer Observations of the z=2.73 Lensed Lyman Break Galaxy, MS1512-cB58

    Get PDF
    We present Spitzer infrared (IR) photometry and spectroscopy of the lensed Lyman break galaxy (LBG), MS1512-cB58 at z=2.73. The large (factor ~30) magnification allows for the most detailed infrared study of an L*_UV(z=3) LBG to date. Broadband photometry with IRAC (3-10 micron), IRS (16 micron), and MIPS (24, 70 & 160 micron) was obtained as well as IRS spectroscopy spanning 5.5-35 microns. A fit of stellar population models to the optical/near-IR/IRAC photometry gives a young age (~9 Myr), forming stars at ~98 M_sun/yr, with a total stellar mass of ~10^9 M_sun formed thus far. The existence of an old stellar population with twice the stellar mass can not be ruled out. IR spectral energy distribution fits to the 24 and 70 micron photometry, as well as previously obtained submm/mm, data give an intrinsic IR luminosity L_IR = 1-2 x10^11 L_sun and a star formation rate, SFR ~20-40 M_sun/yr. The UV derived star formation rate (SFR) is ~3-5 times higher than the SFR determined using L_IR or L_Halpha because the red UV spectral slope is significantly over predicting the level of dust extinction. This suggests that the assumed Calzetti starburst obscuration law may not be valid for young LBGs. We detect strong line emission from Polycyclic Aromatic Hydrocarbons (PAHs) at 6.2, 7.7, and 8.6 microns. The line ratios are consistent with ratios observed in both local and high redshift starbursts. Both the PAH and rest-frame 8 micron luminosities predict the total L_IR based on previously measured relations in starbursts. Finally, we do not detect the 3.3 micron PAH feature. This is marginally inconsistent with some PAH emission models, but still consistent with PAH ratios measured in many local star-forming galaxies.Comment: Accepted for publication in ApJ. aastex format, 18 pages, 7 figure

    Gemini-South + FLAMINGOS Demonstration Science: Near-Infrared Spectroscopy of the z=5.77 Quasar SDSS J083643.85+005453.3

    Full text link
    We report an infrared 1-1.8 micron (J+H-bands), low-resolution (R=450) spectrogram of the highest-redshift radio-loud quasar currently known, SDSS J083643.85+005453.3, obtained during the spectroscopic commissioning run of the FLAMINGOS multi-object, near-infrared spectrograph at the 8m Gemini-South Observatory. These data show broad emission from both CIV 1549 and CIII] 1909, with strengths comparable to lower-redshift quasar composite spectra. The implication is that there is substantial enrichment of the quasar environment, even at times less than a billion years after the Big Bang. The redshift derived from these features is z = 5.774 +/- 0.003, more accurate and slightly lower than the z = 5.82 reported in the discovery paper based on the partially-absorbed Lyman-alpha emission line. The infrared continuum is significantly redder than lower-redshift quasar composites. Fitting the spectrum from 1.0 to 1.7 microns with a power law f(nu) ~ nu^(-alpha), the derived power law index is alpha = 1.55 compared to the average continuum spectral index = 0.44 derived from the first SDSS composite quasar. Assuming an SMC-like extinction curve, we infer a color excess of E(B-V) = 0.09 +/- 0.01 at the quasar redshift. Only approximately 6% of quasars in the optically-selected Sloan Digital Sky Survey show comparable levels of dust reddening.Comment: 10 pages, 1 figure; to appear in the Astrophysical Journal Letter

    Probing the ISM Near Star Forming Regions with GRB Afterglow Spectroscopy: Gas, Metals, and Dust

    Full text link
    We study the chemical abundances of the interstellar medium surrounding high z gamma-ray bursts (GRBs) through analysis of the damped Lya systems (DLAs) identified in afterglow spectra. These GRB-DLAs are characterized by large HI column densities N(HI) and metallicities [M/H] spanning 1/100 to nearly solar, with median [M/H]>-1. The majority of GRB-DLAs have [M/H] values exceeding the cosmic mean metallicity of atomic gas at z>2, i.e. if anything, the GRB-DLAs are biased to larger metallicity. We also observe (i) large [Zn/Fe] values (>+0.6) and sub-solar Ti/Fe ratios which imply substantial differential depletion, (ii) large a/Fe ratios suggesting nucleosynthetic enrichment by massive stars, and (iii) low C^0/C^+ ratios (<10^{-4}). Quantitatively, the observed depletion levels and C^0/C^+ ratios of the gas are not characteristic of cold, dense HI clouds in the Galactic ISM. We argue that the GRB-DLAs represent the ISM near the GRB but not gas directly local to the GRB (e.g. its molecular cloud or circumstellar material). We compare these observations with DLAs intervening background quasars (QSO-DLAs). The GRB-DLAs exhibit larger N(HI) values, higher a/Fe and Zn/Fe ratios, and have higher metallicity than the QSO-DLAs. We argue that the differences primarily result from galactocentric radius-dependent differences in the ISM: GRB-DLAs preferentially probe denser, more depleted, higher metallicity gaslocated in the inner few kpc whereas QSO-DLAs are more likely to intersect the less dense, less enriched, outer regions of the galaxy. Finally, we investigate whether dust obscuration may exclude GRB-DLA sightlines from QSO-DLA samples; we find that the majority of GRB-DLAs would be recovered which implies little observational bias against large N(HI) systems.Comment: 16 pages, 9 figures. Submitted to Ap

    The UV Continuum of Quasars: Models and SDSS Spectral Slopes

    Full text link
    We measure long (2200-4000 ang) and short (1450-2200 ang) wavelength spectral slopes \alpha (F_\nu proportional to \nu^\alpha) for quasar spectra from the Sloan Digital Sky Survey. The long and short wavelength slopes are computed from 3646 and 2706 quasars with redshifts in the z=0.76-1.26 and z=1.67-2.07 ranges, respectively. We calculate mean slopes after binning the data by monochromatic luminosity at 2200 ang and virial mass estimates based on measurements of the MgII line width and 3000 ang continuum luminosity. We find little evidence for mass dependent variations in the mean slopes, but a significant luminosity dependent trend in the near UV spectral slopes is observed with larger (bluer) slopes at higher luminosities. The far UV slopes show no clear variation with luminosity and are generally lower (redder) than the near UV slopes at comparable luminosities, suggesting a slightly concave quasar continuum shape. We compare these results with Monte Carlo distributions of slopes computed from models of thin accretion disks, accounting for uncertainties in the mass estimates. The model slopes produce mass dependent trends which are larger than observed, though this conclusion is sensitive to the assumed uncertainties in the mass estimates. The model slopes are also generally bluer than observed, and we argue that reddening by dust intrinsic to the source or host galaxy may account for much of the discrepancy.Comment: To be published in ApJ, 18 pages, 10 figure

    New Improved Photometric Redshifts of Galaxies in the HDF

    Full text link
    We report new improved photometric redshifts of 1048 galaxies in the Hubble Deep Field (HDF). A standard chi^2 minimizing method is applied to seven-color UBVIJHK photometry by Fernandez-Soto, Lanzetta, & Yahil (1999). We use 187 template SEDs representing a wide variety of morphology and age of observed galaxies based on a population synthesis model by Kodama & Arimoto (1997). We introduce two new recipes. First, the amount of the internal absorption is changed as a free parameter in the range of E(B-V)=0.0 to 0.5 with an interval of 0.1. Second, the absorption due to intergalactic HI clouds is also changed by a factor of 0.5, 1.0, and 1.5 around the opacity given by Madau (1995). The total number of template SEDs is thus 187x6x3=3,366, except for the redshift grid. The dispersion sigma_z of our photometric redshifts with respect to spectroscopic redshifts is sigma_z=0.08 and 0.24 for z2, respectively, which are smaller than the corresponding values (sigma_z=0.09 and 0.45) by Fernandez-Soto et al. Improvement is significant, especially in z>2. This is due to smaller systematic errors which are largely reduced mainly by including three opacities due to intergalactic HI clouds. We discuss redshift distribution N(z) and cosmic star formation rate based on our new photometric redshifts.Comment: 24 pages including 16 eps figures; accepted for publication in Ap

    The UCSD HIRES/KeckI Damped Lya Abundance Database: II. The Implications

    Full text link
    We present a comprehensive analysis of the damped Lya abundance database presented in the first paper of this series. This database provides a homogeneous set of abundance measurements for many elements including Si, Cr, Ni, Zn, Fe, Al, S, Co, O, and Ar from 38 damped Lya systems with z > 1.5. With little exception, these damped Llya systems exhibit very similar relative abundances. There is no significant correlation in X/Fe with [Fe/H] metallicity and the dispersion in X/Fe is small at all metallicity. We search the database for trends indicative of dust depletion and in a few cases find strong evidence. Specifically, we identify a correlation between [Si/Ti] and [Zn/Fe] which is unambiguous evidence for depletion. We present a discussion on the nucleosynthetic history of the damped Lya systems by focusing on abundance patterns which are minimally affected by dust depletion. We find [Si/Fe] -> +0.25 dex as [Zn/Fe] -> 0 and that the [Si/Fe] values exhibit a plateau of ~+0.3 dex at [Si/H] < -1.5 dex. Together these trends indicate significant alpha-enrichment in the damped Lya systems at low metallicity, an interpretation further supported by the observed O/Fe, S/Fe and Ar/Fe ratios. We also discuss Fe-peak nucleosynthesis and the odd-even effect. To assess the impact of dust obscuration, we present estimates of the dust-to-gas ratios for the damped Lya sightlines and crudely calculate dust extinction corrections. The distribution of extinction corrections suggests the effects of dust obscuration are minimal and that the population of 'missing' damped systems has physical characteristics similar to the observed sample. We update our investigation on the chemical evolution of the early universe in neutral gas. [significantly abridged]Comment: 29 pages, 26 figures. Uses emulateapj.sty. Accepted to ApJ: Oct 15, 200

    Far Ultraviolet Spectroscopic Explorer Survey of Magellanic Cloud Supernova Remnants

    Get PDF
    We report the progress to date from an ongoing unbiased ultraviolet survey of supernova remnants in the Magellanic Clouds using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. This survey is obtaining spectra of a random large sample of Magellanic Cloud supernova remnants with a broad range of radio, optical, and X-ray properties. To date, 39 objects have been observed in the survey (38 in the LMC and one in the SMC) and 15 have been detected, a detection rate of nearly 40%. Our survey has nearly tripled the number of UV-detected SNRs in the Magellanic Clouds (from 8 to 22). Because of the diffuse source sensitivity of FUSE, upper limits on non-detected objects are quite sensitive in many cases. Estimated total luminosities in O~VI span a broad range from considerably brighter to many times fainter than the inferred soft X-ray luminosities, indicating that O~VI can be an important and largely unrecognized coolant in certain objects. We compare the optical and X-ray properties of the detected and non-detected objects but do not find a simple indicator for ultraviolet detectability. Non-detections may be due to clumpiness of the emission, high foreground extinction, slow shocks whose emission gets attenuated by the Magellanic interstellar medium, or a combination of these effects.Comment: 34 pages, 26 figures in 8 separate JPG figure files; the characteristics of individual detected supernova remnants are summarized in an Appendi

    Metallicities of 0.3<z<1.0 Galaxies in the GOODS-North Field

    Full text link
    We measure nebular oxygen abundances for 204 emission-line galaxies with redshifts 0.3<z<1.0 in the Great Observatories Origins Deep Survey North (GOODS-N) field using spectra from the Team Keck Redshift Survey (TKRS). We also provide an updated analytic prescription for estimating oxygen abundances using the traditional strong emission line ratio, R_{23}, based on the photoionization models of Kewley & Dopita (2003). We include an analytic formula for very crude metallicity estimates using the [NII]6584/Halpha ratio. Oxygen abundances for GOODS-N galaxies range from 8.2< 12+log(O/H)< 9.1 corresponding to metallicities between 0.3 and 2.5 times the solar value. This sample of galaxies exhibits a correlation between rest-frame blue luminosity and gas-phase metallicity (i.e., an L-Z relation), consistent with L-Z correlations of previously-studied intermediate-redshift samples. The zero point of the L-Z relation evolves with redshift in the sense that galaxies of a given luminosity become more metal poor at higher redshift. Galaxies in luminosity bins -18.5<M_B<-21.5 exhibit a decrease in average oxygen abundance by 0.14\pm0.05 dex from z=0 to z=1. This rate of metal enrichment means that 28\pm0.07% of metals in local galaxies have been synthesized since z=1, in reasonable agreement with the predictions based on published star formation rate densities which show that ~38% of stars in the universe have formed during the same interval. (Abridged)Comment: AASTeX, 49 pages, 16 figures, accepted for publication in The Astrophysical Journa
    • 

    corecore